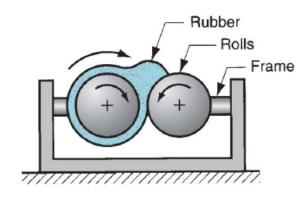
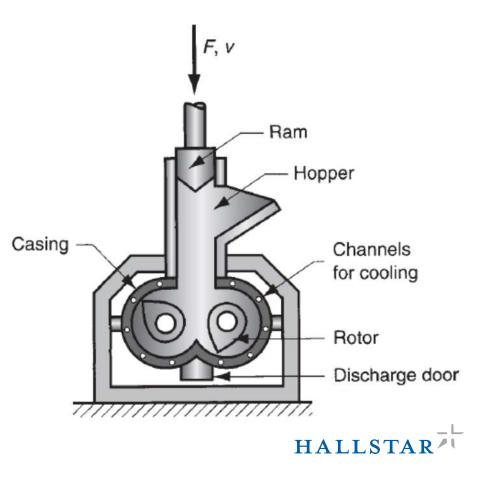
Powder Liquid Dispersions of Plasticizers to Increase Throughput and Meet Sustainability Goals for Tire Tread Formulations

Dan Andjelkovic*, Bradley Pentzien, Stephen O'Rourke

Agenda

- Background on tire compounding process
- Powder-Liquid Dispersions
- Goal of the Project
- Experimental Data & Discussion
- Conclusions
- Acknowledgements


Background on Tire Compounding Process


- Steps in tire compounding process:
 - Breaking down elastomers via internal mixer compounding (peptizers)
 - Addition of plasticizers, CB or silica and process aids
 - Addition of the balance of fillers and AOs
 - Addition of vulcanization components
- Rubber mixing process occurs at high temperatures up to 180°C

Background on Tire Compounding Process

- Overtime, process shifted away from "open-mill processing" toward "internal mixer compounding"
- Compounding is purposely designed to yield uniform dispersion of all compounding materials in a tire tread formulation
- Shift to internal compounding processes led to increased automation, efficiency, quality, compound uniformity and cost savings

Background on Tire Compounding Process

- Detailed design of mixing cycles and order of addition of raw materials are typically governed by a set of well-known guiding principles:
 - Separate high-tack resins from dry powders
 - Hold the batch drop temperature above the Tg of the hard resin component
 - Contain liquids to prevent leakage and raw material losses
 - Make use of the shear properties of rubber to accelerate mixing, and
 - Avoid scorch and subsequent formation of cured/crosslinked particles and crumb
- Some of the principles had been further addressed by the incorporation of dry powder-liquid dispersions (PLD), such as SUPRMIX[®]

Powder-Liquid Dispersions (PLD)

- PLDs are powder products made by dispersing liquids onto a dry powder carrier such as, amorphous silica, Ca-silicate or others
- PLDs are:
 - Low dust
 - Free-flowing powder mixtures
 - Contain about 50-80 wt% of liquid active materials
 - SUPRMIX® typically contain 72 weight % of active liquid material
- Typical actives include plasticizers, coumarone-indene resin, epoxy resins, waxes, petrolatum, liquid polymers, anti-oxidants, peptizers, co-agents, process oils, adhesion promoters and more

Benefits of using PLDs in Rubber Compounds

- Improved handling
- Improved batch-to-batch consistency
- Reduced employee exposure (with hazardous actives)
- Reduced spill potential
- Improved batch incorporation and compound consistency
- Reduce equipment clean out
- Reduced residual chemical disposal
- Reduced drum disposal
- Also available in low melt pre-weighs for easier handling and more accurate charging

Goal of the Project

- To determine mixing time, torque, and energy consumption to emphasize the efficiency and sustainability gains realized from incorporation of PLDs
- To use tire tread formulations to confirm that physical data are not affected by a shift from liquid plasticizers to powder liquid dispersions

Rheomix 600 parameters (77 rpm, 93°C)	DOP	SUPRMIX [®] DOP
Plasticizer level (phr)	30	30
Maximum torque (m.kg)	2.08	2.40
Compound temperature (°C)	108	111
Maximum energy (kJ)	64	46
Dispersion time (min)	10.0	7.0

- Collaborative study with a major compounder in a proprietary NBR formula
- Observed 30% improvement in cycle time by utilizing Suprmix[®] PLD
- About 28% reduction in energy requirement for the compounding process
- In an actual plant run, mixing time was reduced from 210s to 90s

DOTP formulations (parts)	Formula #1 (DOTP)	Formula #2 (SUPRMIX [®] DOTP)
NBR	100	100
Carbon Black	75	75
Hard Clay	80	80
Silica	11.6	
DOTP	30.0	
SUPRMIX [®] DOP		41.6
TOTAL	296.6	296.6

- Comparative study was done in compositionally identical NBR formulations
- Testing was conducted in triplicates and results averaged
- The rotor speed of the mixer remained constant throughout the compounding of all 6 batches

DOTP formula	Mix time	kWh
#1 - Liquid	291.3	35.3
#2 - SUPRMIX®	280.0	33.8
Δ	11.3	1.5
$\Delta\%$	3.9%	4.2%

- Mixing of each batch was stopped once the target temperature of a compound was achieved
- Results indicate an average mix cycle time reduction of 3.9% and power reduction of 4.2% when PLD version of the plasticizer is employed

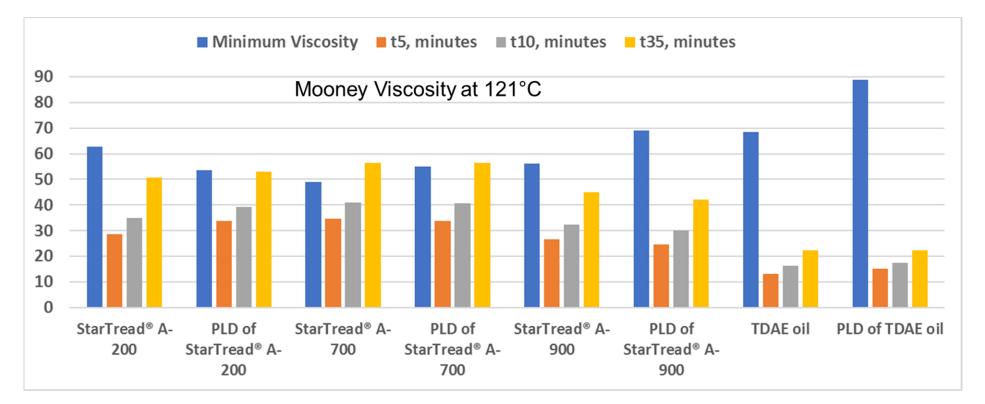
DBEEA formulations (parts)	Formula #3 (DBEEA)	Formula #4 (SUPRMIX [®] DBEEA)
NBR/PVC (70/30) blend	142.8	142.8
Carbon Black	35.0	35.0
Hard Clay	85.0	85.0
Silica	21.8	
DBEEA	56.0	
SUPRMIX [®] DBEEA		77.8
TOTAL	340.6	340.6

• This comparative study was done in compositionally identical NBR/PVC blend formulation using the same test protocol

DOTP formula	Mix time	kWh
#3 - Liquid	323.7	17.2
#4 - SUPRMIX®	236.3	14.4
Δ	87.3	2.8
Δ%	27.0%	16.2%

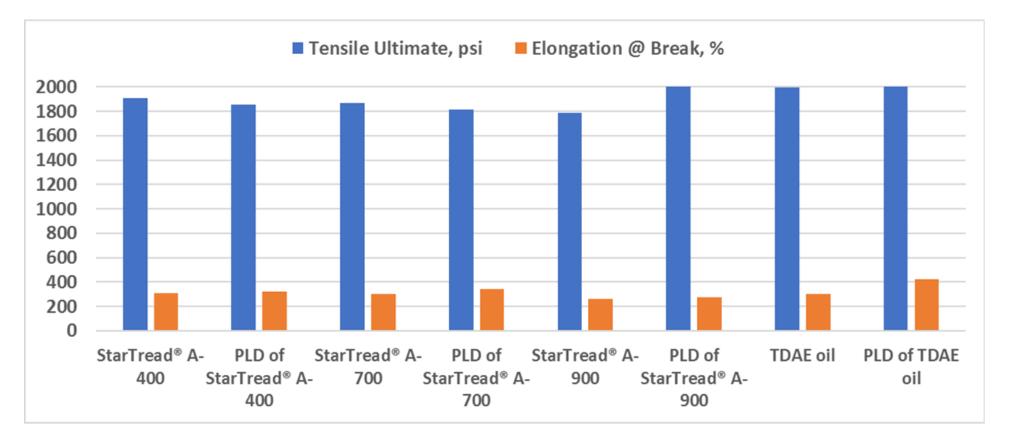
 Results of this test study show 27% improvement in the mix cycle time and 16.2 % reduction in the energy consumption during mixing process

StarTread® Selection

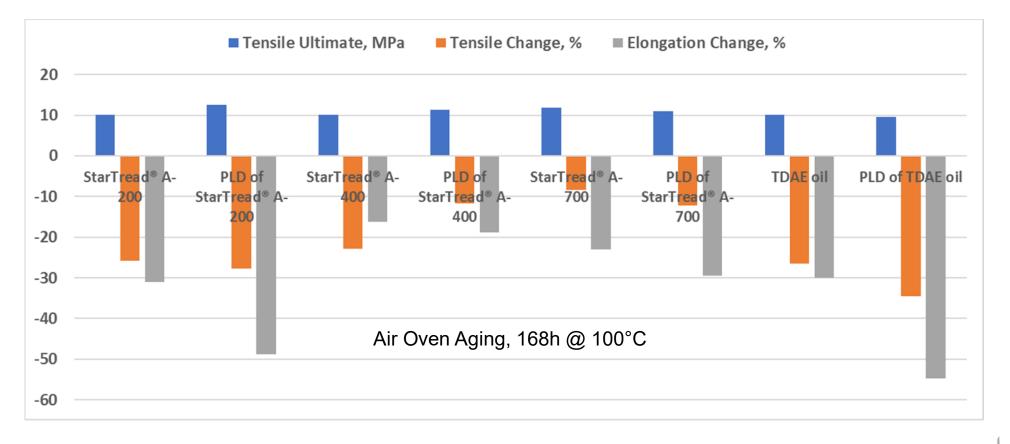

	Highlighted performance advantages in tire-tread compounds					
Ester Product	Winter	Wet	Roll			
StarTread [®] A-140	Good	Excellent	Excellent			
StarTread [®] A-200	Good	Good	Good			
StarTread® A-400	Excellent	Poor	Good			
StarTread [®] A-700	Good	Excellent	Good			
StarTread [®] A-900	Poor	Excellent	Poor			

- The 2nd goal of the project was to demonstrate similar performance between formulations made with liquid plasticizers and PLDs
- Performance advantages of selected StarTread® products are based on DMA data parameters widely used in the tire industry

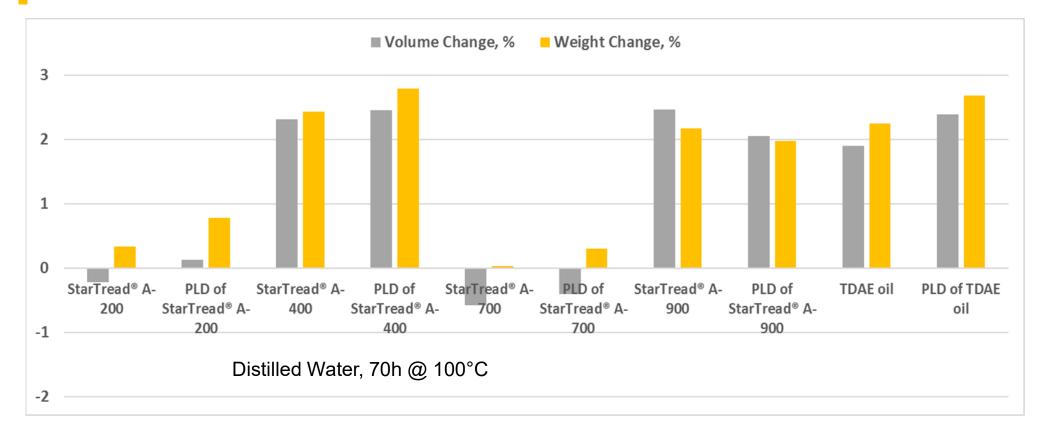
StarTread® liquid and PLD tire compound formulations


Material	StarTread [®] A-200	StarTread [®] A-400	StarTread [®] A-700	StarTread [®] A-900	TDAE oil	PLD of StarTread [®] A-200	PLD of StarTread [®] A-400	PLD of StarTread [®] A-700	PLD of StarTread [®] A-900	PLD of TDAE oil
					Parts ((phr, wt.)				
Duradene 739 S-SBR	75.00									
Diene 645 BR	25.00									
Hi-Sil 190G (silica)	80.00									
X 50-S (reinforcing agent)	12.80									
Norman-346 (TDAE oil)	16.25									
Kadox 920 (zinc oxide)	2.5									
Staric acid	1.00									
Antiozonant Vulkanox 4020 (6PPD)	2.00									
Nochek 4729 (paraffin wax)	1.50									\rightarrow
StarTread [®] A-200	16.25	-				22.57				
StarTread [®] A-400		16.25					22.57			
StarTread [®] A-700			16.25					22.57		
StarTread [®] A-900				16.25					22.57	
TDAE oil					16.25					22.57
Subtotal	232.30	232.30	232.30	232.30	232.30	238.62	238.62	238.62	238.62	238.62
Mill Addition										
Sulfur	1.40									
Vulkacit CZ (sulfonamide)	1.70									
Akrochem Accelerator DPG (diphenylguanidine)	2.00									
Total	237.40	237.40	237.40	237.40	237.40	243.72	243.72	243.72	243.72	243.72

Comparative Mooney Viscosity Data



Liquid and PLD compound samples exhibited similar performance characteristics


Original Mechanical Properties

Aged Mechanical Properties

Fluid Resistance Properties

Conclusions

- PLD versions of liquid rubber additives show significant improvement in mix cycle times and in total power consumption.
- Positive impacts on the cycle time and energy consumption are demonstrated
- PLDs also have significant positive impact on the environment
- U. S. Department of Energy estimates that coal power plants generate approximately 2.1 lbs of carbon dioxide (CO2) per kilowatt hour (kWh) of electricity produced.
- Estimating a reduction of 2.15 kWh per batch based on the mix data presented above, a rubber mixing facility that produces 40,000 batches per year would save 86,000 kWh's.
- This would further translate to a reduction of approximately 180,600 lbs of CO2
- Results for each pair of liquid StarTread® and PLD formulations exhibit small performance differences which indicate that end-users could easily replace liquid additives in their tire formulation with their PLD analogues without a fear of drastic performance changes.

Acknowledgements

Hallstar Industrial Solution team would like to express our appreciation to Gates Corporation team in Galesburg, IL and Hexpol Compounding team in Burton, OH for collaboration, guidance and support on this project.

