Development of New Generation of Ester Plasticizers for High Temperature Ethylene Acrylic Elastomers

Agenda

- Background on AEM elastomers
- Plasticizers for high-temperature AEM applications
- Goal of the project
- Overview of the experimental plan
- Results and discussion
- Conclusions
- Acknowledgements

Background on AEM Elastomers

- AEM elastomers are used in applications requiring continual service up to 175°C and intermittent exposure to extremely high temperatures of up to 200 °C
- Lower cost alternatives to FKM and FVQM
- Exhibit improved high temperature resistance over HNBR and ECO
- There are two well known types:
 - ACM (<u>A</u>crylic <u>C</u>o-<u>M</u>onomer)
 - AEM (<u>A</u>crylic-<u>E</u>thylene <u>M</u>onomer)

Background on AEM Elastomers

- Conventional CB and Silica fillers provide stiffness in AEM compounds but
 - Accelerate oxidative degradation
 - Reduce thermal stability
- DuPont[™] developed novel melt-blending technology which allowed reinforcement of AEM with a dispersion of grafted PA6 droplets
- DuPont[™] VMX 5000 elastomers are based on amine cure system
- Result is a strong, heat-resistant elastomer compound with good heat-aging and compression set properties
- Enhanced performance is due to
 - Extensive AEM-PA6 grafting
 - Absence of filler-filler contacts
 - Beneficial modification of oxidation profile under diffusion-limited conditions

Plasticizers for high-temperature AEM applications

- Highly polar AEM elastomers require higher-polarity ester plasticizers to
 assure optimal compatibility
- Due to the high post-cure and application temperature requirements few plasticizer have found utility in demanding AEM applications
- Polar monomeric plasticizer have good low temperature properties but suffer from higher weight losses during high temperature aging
- Polar high MW plasticizer have good permanence but lack optimal low temperature flexibility

Goal of the Project

• To develop new generation of high-performance ester modifiers and help expand modifier options for the acrylic elastomer market

Experimental Plan

Material	Wt (g)	% in the formula
Vamac [™] Ultra IP ª	45	28.64%
Vamac [™] VMX 5015 ª	100	63.65%
N550 Carbon Black ^b	2	1.27%
ADPA Anti-oxidant °	1.4	0.89%
Vanfre VAM ^d	0.5	0.32%
Stearic Acid	0.5	0.32%
Plasticizer	5	3.18%
DIAK TM -1 ^d	0.7	0.45%
Vulcofac ACT 55 ^e	2	1.27%
Total	157.1	100%

Samples used in this study

TegMeR® 812	Lower MW polyether ester
RX-14434	Higher MW polyether ester
RX-14562	Aliphatic polyester
RX-14565	Aromatic polyester

^a provided by DuPont Performance Elastomers

^b provided by Sid Richardson

^c N-Phenyl-p-Phenyldiamine (Cas#101-54-2) purchased from Sigma-Aldrich

^d Vanderbilt Chemicals LLC

^e Provided by Safic-Alcan

Testing

Mooney Viscometer

ASTM D1646-94, viscTECH+, large rotor, 1 minute Preheat

Oscillating Disc Rheometer

ASTM D2084-93, RheoTECH Rheometer, round die, 3° Arc, 30 sec preheat. MH at central point of torque rise, rate – one lb., 2.5cm/5min

Original Properties

- Tensile, Elongation, Modulus ASTM D412-92, Method A, Die C, Crosshead speed 5130 cm/min
- Hardness ASTM D2240-91, 1s reading
- Specific Gravity ASTM D792-91

Low Temperature

- Gehman ASTM D1053
- T_g by DSC:
 - Perkin Elmer Diamond DSC
 - Temperature ramp of -100 to 70°C at 20 °C/min

Air Oven Aging

ASTM D573-81

Compression Set

ASTM D395, Test Method B

Original Properties – Round 2

	TegMeR® 812	RX-14434	RX-14565	RX-14562	No plasticizer
Stress @ 100% Elongation, MPa	2.1	2.0	2.4	2.2	3.0
Stress @ 200% Elongation, MPa	5.6	6.2	7.1	6.6	9.1
Stress @ 300% Elongation, MPa	10.3	11.9	12.6	12.1	15.1
Tensile Ultimate, MPa	13.8	15.6	14.6	14.6	16.2
Elongation @ Break, %	382	367	348	359	318
Hardness Duro A, pts.	60	60	63	58	65
Specific Gravity	1.078	1.078	1.078	1.078	1.079

Heat Aging – Weight Change

- Neat AEM polymer exhibited some weight loss so all of the data was normalized
- Normalized data helped elucidate performance differentiation between the 4 samples used in this study

Heat Aging – Volume Change

 The compounds showing weight or volume "gain" are at low enough levels as to be considered equivalent with the control compound, effectively losing no weight or volume due to plasticizer loss

Heat Aging – Changes in Elongation

Recipe Variable	TegMeR® 812	RX- 14434	RX- 14565	RX- 14562	Control
Elongation at Break	•				
Original, %	382.4	366.9	347.7	358.9	318.3
Air Oven, 2 wk @ 190 °C, %	-45.5	-40.7	-50.8	-41.0	-36.0
change					
Air Oven, 3 <u>wk</u> @ 190 °C, %	-58.6	-58.4	-59.7	-54.6	-51.8
change					
Air Oven, 4 wk @ 190 °C, %	-68.9	-66.5	-67.0	-63.7	-63.9
change					

Heat Aging – Changes in Tensile Properties

Recipe Variable	TegMeR® 812	RX- 14434	RX- 14565	RX- 14562	Control
Tensile Ultimate					
Original, psi	2004	2256	2123	2122	2347
Air Oven, 2 wk @ 190 °C, % change	-45.4	-44.7	-46.1	-46.1	-41.6
Air Oven, 3 wk @ 190 °C, % change	-56.7	-64.5	-52.5	-55.5	-59.0
Air Oven, 4 wk @ 190 °C. % change Plot Area	-64.4	-66.9	-58.8	-61.3	-73.7

Heat Aging – Compression Set

Compression Set, %

70 hrs at 150°C, under constant deformation

Original Tg

- As expected, TegMeR® 812 is most efficient at lowering Tg compared to experimental polymeric materials
- All provide good starting Tg

Heat Aging – Effect on Low Temperature

- TegMeR® 812, while starting with the lowest Tg, loses the most performance after aging
- RX-14562 retains the best performance after aging

Low Temperature – Gehman Data

- All plasticizers improve low temperature performance versus control
- TegMeR® 812 continues to offer best original properties, but loses more performance after aging than RX-14434 and RX-14562

Conclusions

- Significant improvement in permanence after heat aging was achieved by increasing molecular weight of plasticizer
- RX-14562 shows the best retention of physical and low temperature properties after heat aging

Acknowledgements

 Hallstar Industrial Solution team would like to express our appreciation to Steven Oriani, Edward McBride and Mark Stewart of DuPont Performance Polymers group for providing elastomer samples and their guidance and support on this project

