Evaluation of Fully Renewable Polymeric Plasticizers in PVC Compound Formulations

Hallstar Industrial Solutions Company Commercial Development Group Dejan Andjelkovic, Steve Semlow and Sean Neuenfeldt

Project Goals

- The goal of the project was to synthesize a selection of 100% renewable polyester plasticizers and then conduct side-by-side comparative evaluations of said plasticizers in the standard PVC compound formulations against selected control plasticizers
- Another goal of the project was to showcase an example of a calculation of the overall performance ratings of all plasticizers used in the study based on the priorities assigned to the key performance criteria

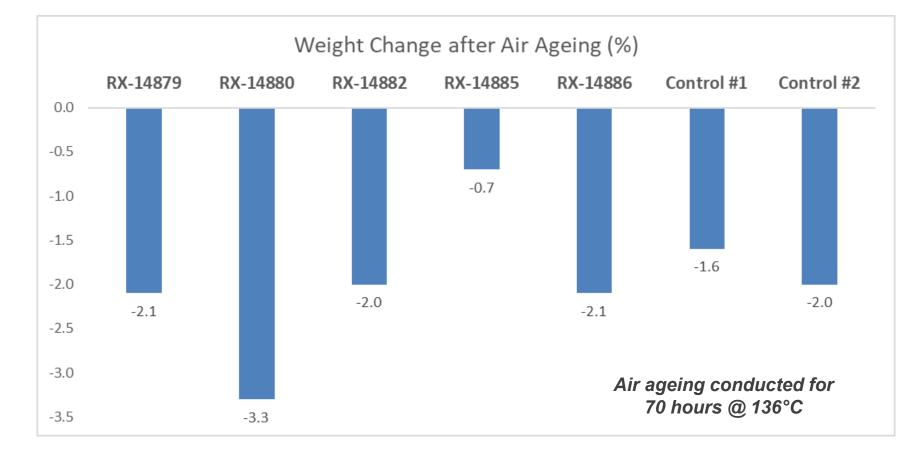
Data Review and Discussion

Formulations and Tests

Ingredients	Parts
S-PVC (K 68-70)	100.0
Ca/Zn Stabilizer	2.0
ESO	5.0
Plasticizer	67.0

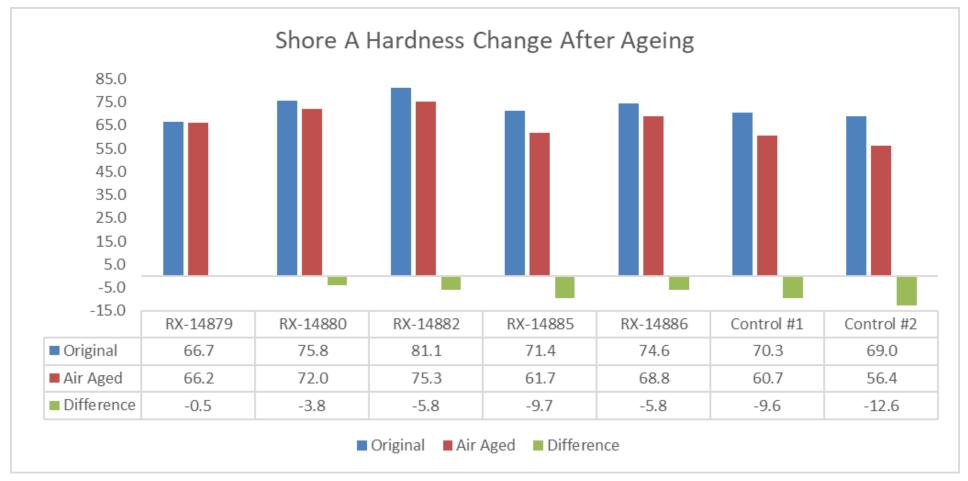
Test	Conditions
Originals (basic tensile properties)	Room temperature Instron testing
Air Aging	70 hours @ 136°C
DI Water Aging	24 hours @ 90°C followed by dry-out (DO) for 24 hours @ 60°C
Cottonseed Oil Aging	24 hours @ 60°C
Tg by DSC250	Original and after air ageing
IRM 902 Oil Ageing	96h @ 100°C

NOTE: All compounds were milled on a Reliable two-roll mill at 365°F (180°C) set temperature for about 5-10 min followed by compression molding of 6 x 6 x 0.075 inch plaques at 340°F (171°C) for 10 min

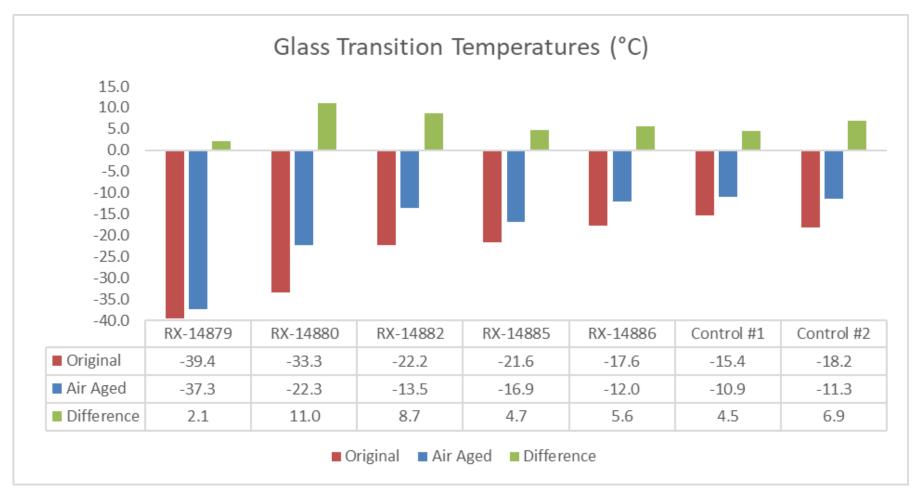

Renewable Polyester QC Properties

	RX-14879	RX-14880	RX-14882	RX-14885	RX-14886	Control #1	Control #2
Form @ 25°C	Semi-Solid	Semi-Solid	Liquid	Solid	Liquid	Liquid	Liquid
Melting Point Range (°C)	ing Point Range (°C) 5 to 30 5 to		NA	50 to 60	NA	NA	NA
AV	2.1	0.5	0.1	0.2	0.4	~ 1.0	~ 1.0
Viscosity (cP)	172 @ 40°C	264 @ 40°C	3610 @ 25°C	N/A	3032 @ 25°C	~ 3500 @ 25°C	~ 3900 @ 25°C
Molecular Weight	Medium	Medium	Medium	High	Medium	Medium	Medium
Specific Gravity	0.996 @ 40°C	1.047 @ 40°C	1.07 @ 25°C	N/A	1.093 @ 25°C	1.085	1.09
Refractive Index	1.462	1.46	1.471	N/A	1.463	1.467	1.458
Biobased content (%)	100	100	100	100	100	0	0

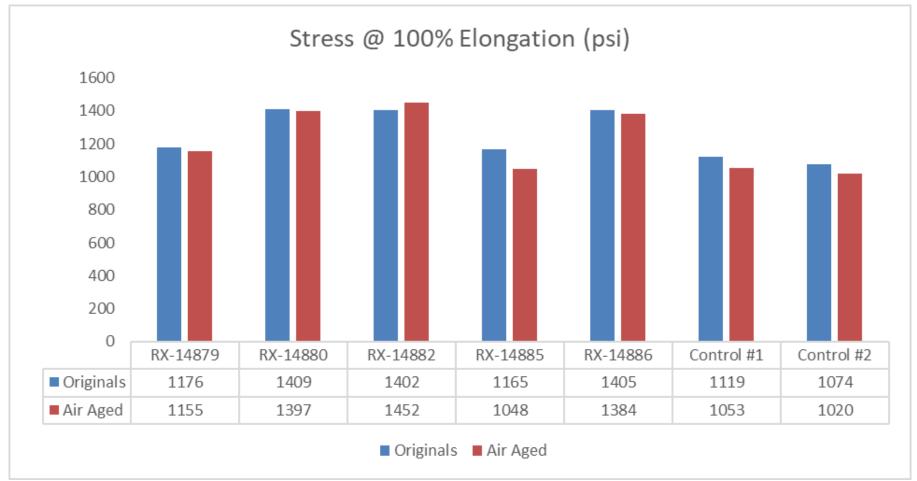
NOTE: All RX polyesters were synthesized using a range of commercially available plantderived renewable raw materials


Weight Change After Air Ageing

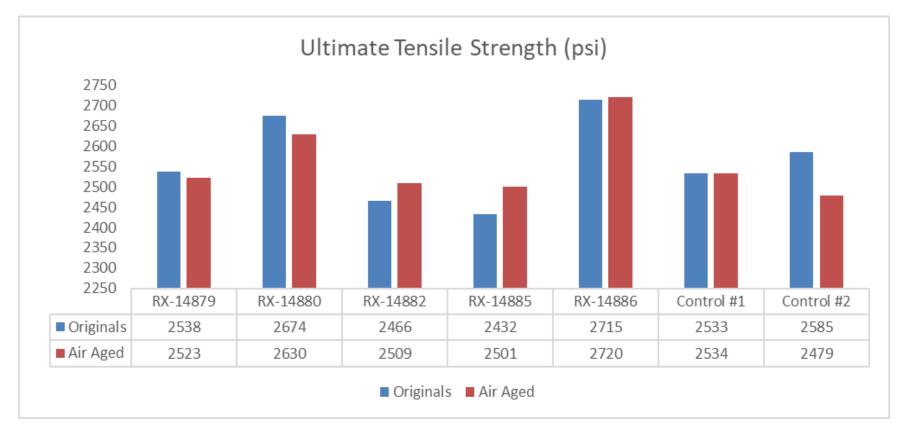
- Renewable polyester plasticizer RX-14885 exhibited the lowest weight change after air ageing, significantly better than that of both Controls
- RX-14880 polyester plasticizer exhibited the highest weight loss


Hardness Change After Air Ageing for Incumbents

- Renewable polyester plasticizers RX-14879 and RX-14880 exhibited the lowest change in PVC compound hardness after air ageing
- RX-14879 also exhibited the lowest original hardness while RX-14882 exhibited the highest

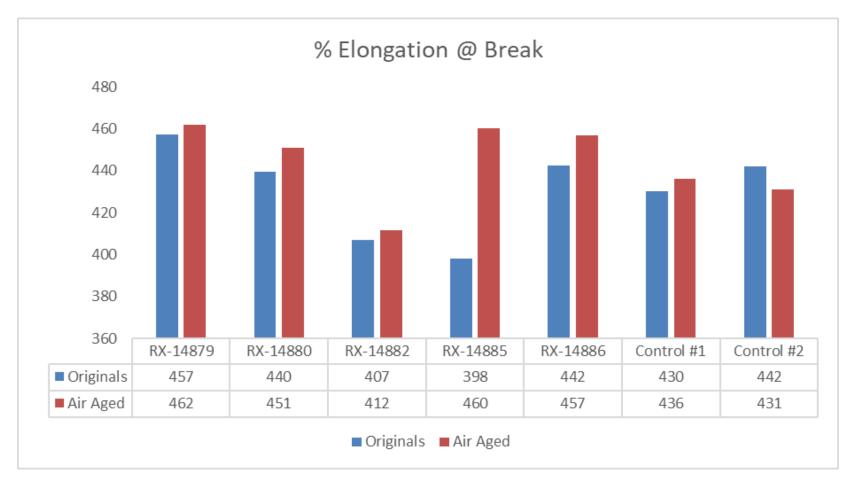


Glass Transitions Before and After Air Ageing

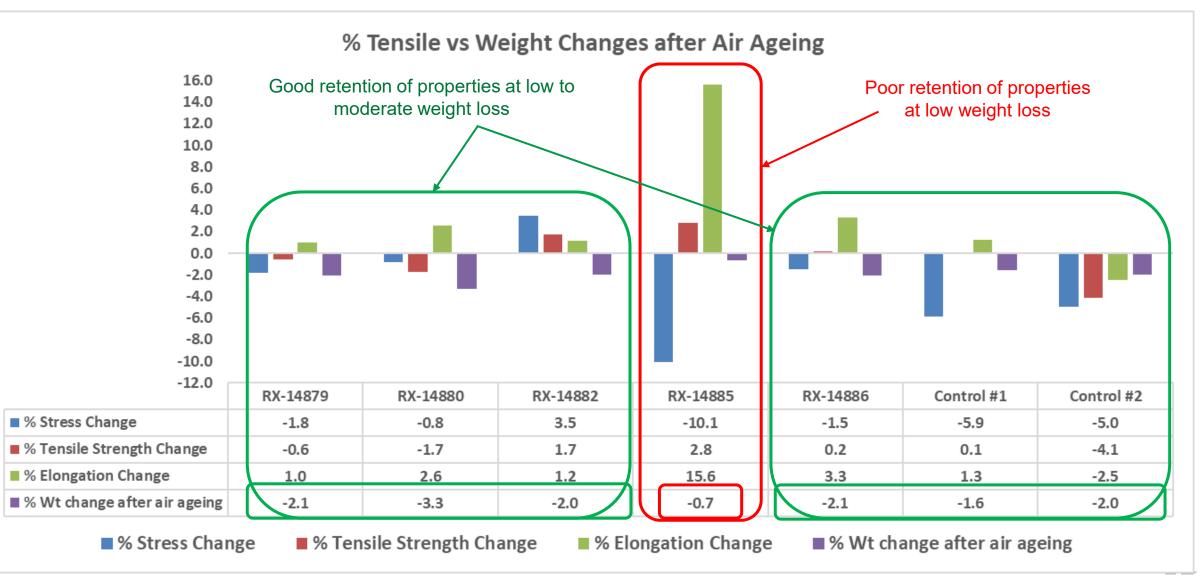

- Renewable polyester plasticizers RX-14879 and RX-14880 exhibited the lowest initial and aged Glass Transitions
- RX-14879 polyester plasticizer was the best in retaining the low temperature Tg after ageing with only 2.1°C increase after ageing
 HALLSTA

Stress @ 100% Elongation After Ageing

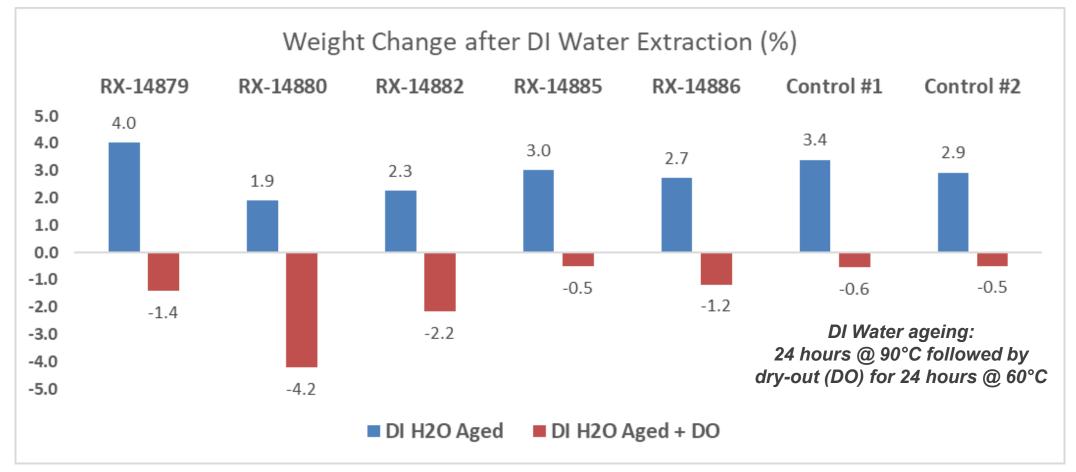
- RX-14880, RX-14882 and RX-14886 exhibited the highest original and aged moduli of all plasticizers
- RX-14885 and both Control plasticizers exhibited the lowest moduli before and after air ageing
 HALLSTAR


Tensile Strength Change After Ageing

- RX-14880 and RX-14886 polyesters exhibited the highest original and aged tensile strength of all plasticizers
- RX-14882 and RX-14885 plasticizers exhibited the lowest original tensile strengths while also exhibiting increase in tensile strength after heat ageing

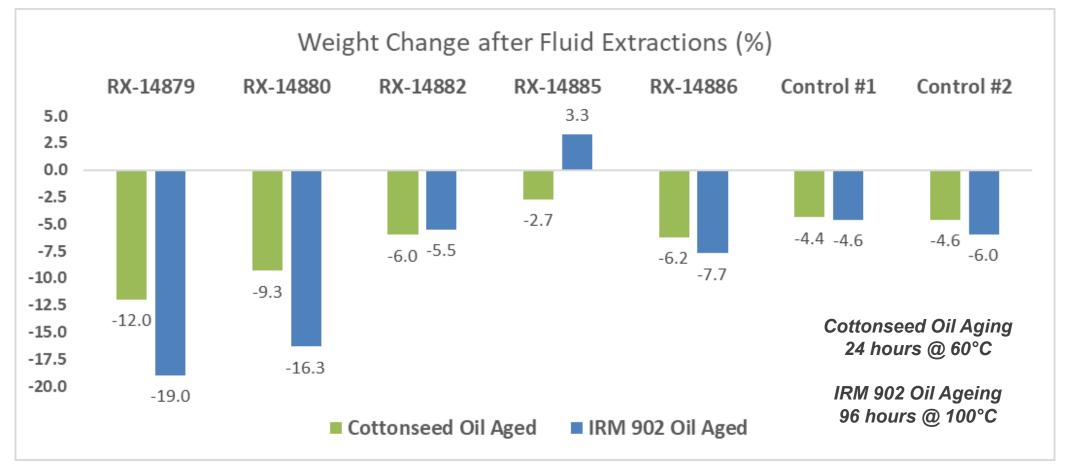

Elongation @ Break Change After Ageing

- RX-14879 polyester exhibited the highest elongation before and after air ageing along with excellent retention of elongation after ageing
- RX-14882 and RX-14885 exhibited the lowest original elongation

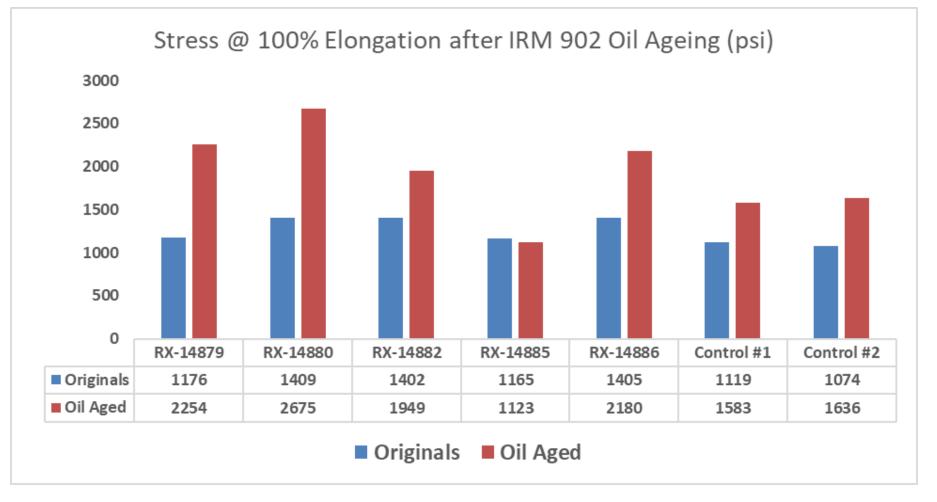


Tensile Performance Changes After Air Ageing

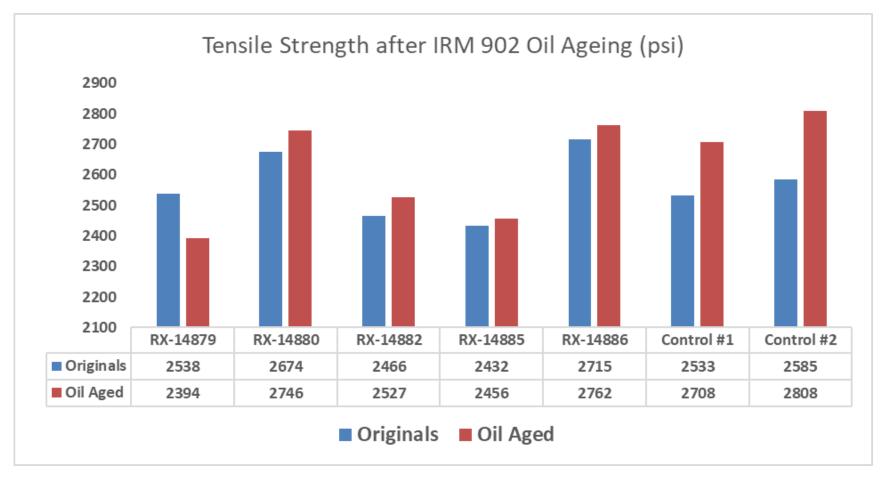
HALLSTAR


% Weight Change After DI Water Ageing

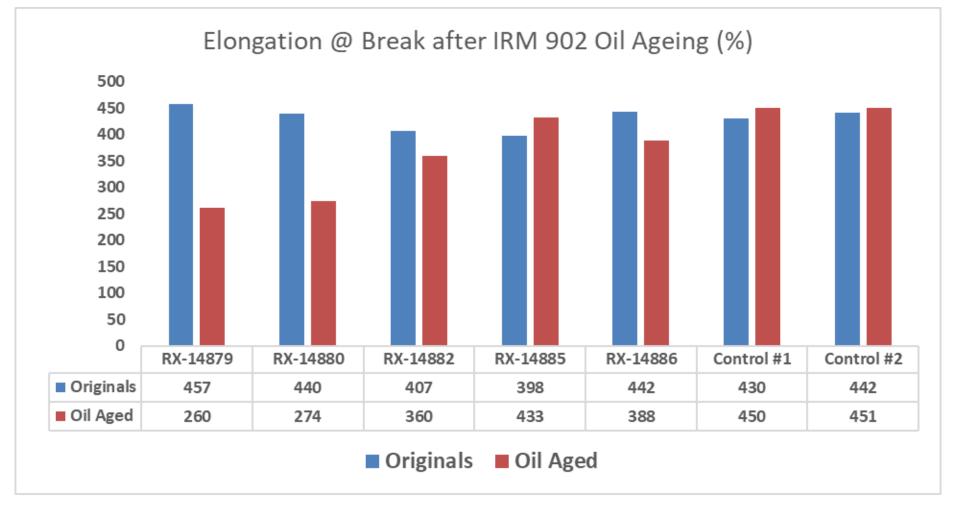
- RX-14879 polyester had the highest water pickup of all plasticizers while other RX polyesters had lower water pickups than the Controls
- RX-14885 renewable polyester was in-line with both water swell and DO performance of both Controls
- RX-14880 exhibited the highest DO weight loss of all plasticizers



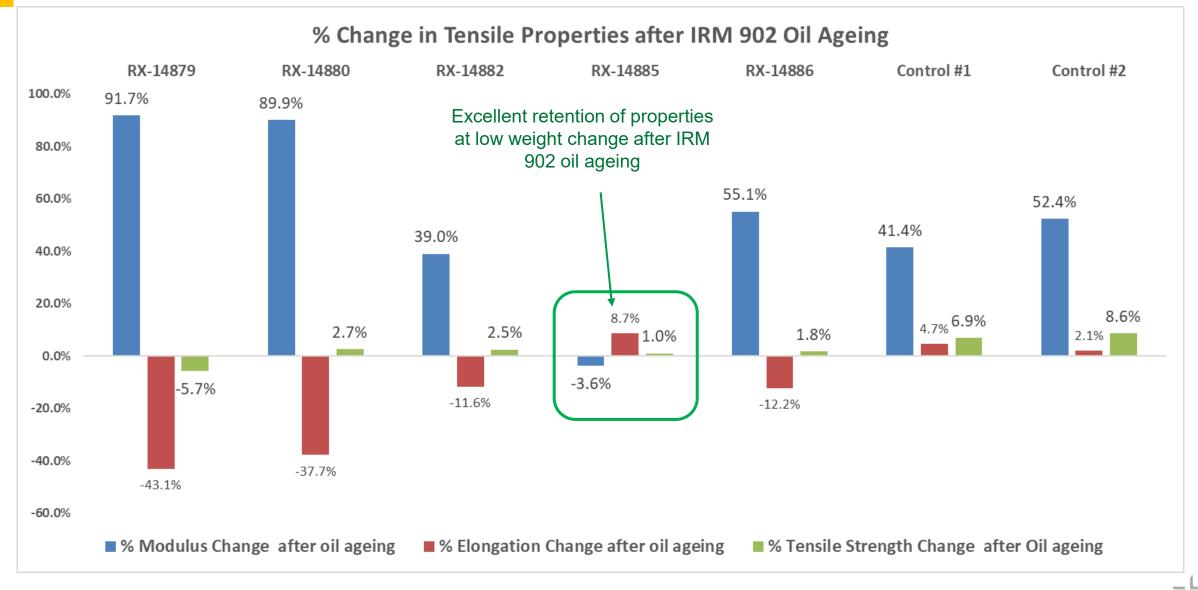
% Weight Change After Low Polarity Fluid Extractions


- Weight losses for both cottonseed and IRM 902 oils follow very similar trend with RX-14885 being the best performer of all
 plasticizers in the study
- RX-14885 renewable polyester surprisingly exhibited small weight gain (swell) in IRM 902 oil whiles all other polyesters experienced weight losses
- RX-14882 and RX-14886 could be described as having similar performance while RX-14879 and RX-14880 could be described as having poorer performance to Controls
 HALLSTAR

Change in Modulus After IRM-902 Oil Ageing


HALLSTAR

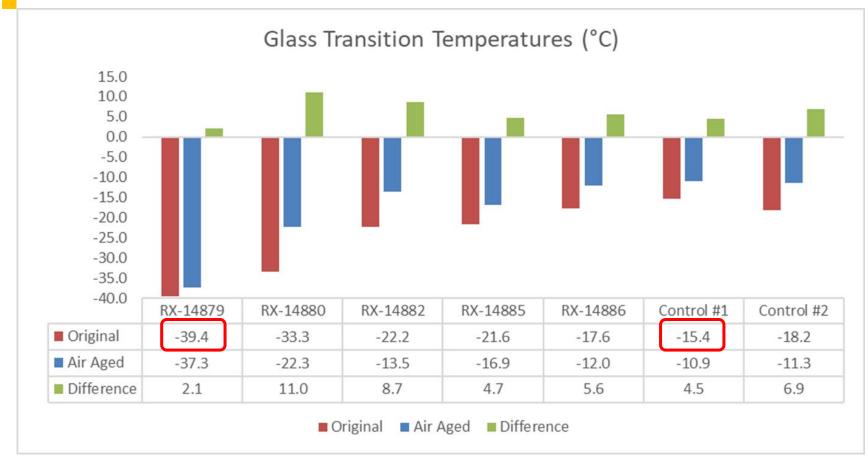
Change in Ultimate Tensile Strength After IRM-902 Oil Ageing



Change in Elongation @ Break After IRM-902 Oil Ageing

HALLSTAR

Change in Tensile Properties After IRM-902 Oil Ageing



HALLSTAR

Performance Rating Calculations

Examples of Performance Ratings Guidelines

 Lastly – simply assign ratings based on where the actual specimen values fit in the agreed upon performance ranges ("5" is best and "1" is worst)

Initial	(Original)	Гg		
	-15.4		eq to -16 or higher	1
	-39.4		< -16 and > -20	2
	Range		< -20 and > -25	3
			< -25 and > -30	4
			eq to -30 or lower	5

- 1st Pick the lowest and the highest Tg values to set the performance range
- 2nd Split the range into section to allow for proper / effective rating assignments

Examples of Performance Ratings Guidelines

	Recipe Variable	RX-14879	RX-14880	RX-14886	RX-14882	RX-14885	Control #1	Control #2
% Change of Stres	s @ 100% El (psi) after	91.66	89.93	55.11	39.01	-3.57	41.42	52.41
% Change of E	Iongation at Break (%)	-43.08	-37.71	-12.24	-11.64	8.65	4.65	2.12
% Change of Ulti	mate Tensile Strength	-5.70	2.67	1.76	2.46	0.98	6.91	8.62
	TOTAL Chang	140.44	130.31	69.11	53.11	13.20	52.98	63.15

NOTE: Slide 19 uses this tabulated data for the graph

- 1st Add the absolute values of all the % differences for all tensile properties for each specimen
- 2nd Use the total change row data to set the performance range
- 3rd Split the range into section to allow for proper & effective rating assignments
- Lastly simply assign ratings based on where the actual specimen values fit in the agreed upon performance ranges ("5" is best and "1" is worst)

re	retention of tensiles after IRM-902 oil ageing									
	13.20		< 45	5						
	140.44		eq to 45 to 75	4						
	Range		eq to 75 to 105	3						
			eq to 105 to 135	2						
			> 135	1						

Overall Performance Ratings

The weighted percentage values are assigned by the customer based on their needs for performance for a given application

WEIGHT 🔶	10	5	10	15 🗲	10	10	10	10	5	10	5	100
PERFORMANCE CRITERIA	Initial Tg / low temp. flexibility	Tg / low temp. flexibility after heat ageing	Weight loss after heat ageing	Retention of tensile prop. after heat ageing	Weight pick- up/swell after DIW ageing	DO wt change after DIW ageing	Weight loss after cottonseed oil ageing	Retention of Hardness / Hardness Change	% wt change after IRM-902 oil ageing	retention of tensiles after IRM-902 oil ageing	Surface Energy Data (dynes)	TOTAL POINTS
RX-14879	5	5	3	5	1	3	1	5	1	1	3	310
RX-14880	5 🗙	3	2	4	5	1	1	3	1	2	5	295
RX-14882	3	1	4	4	4	2	3	3	3	4	2	320
RX-14885	3	2	5	1	2	5	5	2	5	5	5	345
RX-14886	2	X	3	4	3	3	3	3	3	4	3	305
Control #1	1	1	4	4	2	4	4	2	4	4	2	305
Control #2	2	1	4	3	3	5	4	1	3	4	2	305
Rating system: 5 best, 1 worst performance												
											/	

The performance values are determined based on the test data for the performance criteria deemed important

TOTAL score indicates final performance rating for all products tested for a given hypothetical application and the scoring/performance rating system jointly agreed upon

Performance Summary

example, RX-14885 polyester seems like the most suited for this end application Medium **Performers** High **OVERALL PERFORMANCE RATING Performers** 345 350 340 330 320 320 310 305 305 305 310 295 300 290 280 270 RX-14880 RX-14882 Control #1 Control #2 RX-14879 RX-14885 RX-14886

Based on the FINAL performance score described in this

HALLSTA

NOTE: The overall performance rating may change depending on desired weight placed on each key performance characteristic!

Low **Performers**

Conclusions

Conclusions

- Several new polymeric plasticizers made from 100% renewable resources were synthesized, compounded, and evaluated against selected control polymeric plasticizers
- Multitude of tests were performed, and data used for direct side-by-side comparisons against control plasticizers
- The overall performance rating was also calculated based on ratings assignments for key
 performance criteria for each plasticized compound based on a hypothetical endapplication
- The highest performing polymeric plasticizer in this example was RX-14885 having performance ratings of 345 with the 2nd best in performance being RX-14882 polyester having 25 points lower score
- This example process emphasizes the importance of customer-focused and data-driven approaches Hallstar uses toward new product development

